
Pseudo Single-Bunch Workshop June 2006

Outline

• Time-resolved EXAFS - spin-crossover transition in Fe[tren(py)3]2+

• Ultrafast XANES – insulator/metal transitions in VO2

• Charge Transfer in [Ru(bpy)3]2+

• Bonding Properties of Liquid Silicon and Liquid Carbon

• X-ray/laser ionization dynamics in atomic systems

• X-ray/laser mixing

Generation of femtosecond x-rays at the Advanced Light Source
• Technique: femtosecond manipulation of electron beam
• New Femtosecond Undulator Beamline (in commissioning)

Science at time-resolved x-ray science beamline (ALS BL5.3.1)

Pseudo Single Bunch Operation of the ALS
• Scientific/experimental opportunities
• Technical considerations
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fundamental time scale for atomic motion
vibrational period: Tvib ~ 100 fs

Atomic Structural Dynamics

• ultrafast chemical reactions

• ultrafast phase transitions

• surface dynamics

• ultrafast biological processes

Ultrafast X-ray Science
Rapidly emerging field of research - Physics, Chemistry and Biology
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Fundamental Time Scales in Condensed Matter

fundamental time scales for electron dynamics
electron-phonon interaction times ~ 1 ps

e-e scattering times ~10 fs
correlation time ~100 attoseconds (a/VFermi)

Electronic Structural Dynamics

• charge transfer

• correlated electron systems
charge/orbital ordering
CMR
high Tc superconductivity

Understanding the interplay between atomic and electronic structure
- beyond single-electron band structure model – correlated systems (charge, spin, orbit, lattice) 
- beyond simple adiabatic potential energy surfaces

• electronic phase transitions

Fundamental Scientific Challenge in Condensed Matter:
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EXAFS – local atomic structure and coordination

NEXAFS – local electronic structure, bonding geometry, 
magnetization/dichroism

(near-edge x-ray absorption fine structure)

time-resolved x-ray spectroscopy

(extended x-ray absorption fine structure)

surface EXAFS, µµµµEXAFS ….
( )( )

2

2sin
~)(

kr
kkr

rf
φ+



Pseudo Single-Bunch Workshop June 2006

Time-resolved Spectra (ALS BL 5.3.1)
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X-ray Absorption Spectra - FeII in Acetonitrile
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M. Khalil et al., J. Phys. Chem. (2006)
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M. Khalil et al., J. Phys. Chem. (2006)
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Photochemistry in Solution

• How does the bonding evolve through the transition state?

• What are the molecular structural dynamics?

• What is the role of the solvent (surface, protein)?
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Transition-metal complexes
- metal carbonyls

Chlorine dioxide photodissociation
- atmospheric photochemistry

Metal porphyrin dynamics
- heme protein
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Ultrafast Structural and Electronic Transitions in VO2
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Mott-Hubbard insulator – e-e correlation ?
Zylberstein and Mott, PRB (1975)
Pouget et al., PRB (1974), PRL (1975)

Band insulator – structural component ?
Goodenough, Phys. Rev. (1960)
Wentzcowitch, PRL (1994)
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ALS Beamline 5.3.1
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A. Cavalleri et al., Phys. Rev. B, 69, 153106 (2004). 
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Signal on picosecond time scale 
dominated by growth of metallic phase

Picosecond NEXAFS Measurements in VO2
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Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films
S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh and L.H. Chen

Science, 264, 413 (1994).

Colossal Magnetoresistive Manganites

Tokura et al., PRB, 1996
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Metallic
Mn3+ Mn4+ Mn3+

H Electron-delocalizing 
double-exchange

An insulator-to-metal phase transition can be induced by:
- applied magnetic field (CMR)
- pressure
- X-ray illumination
- optical excitation – 230 fs!

- practical applications
- fundamental physics – atomic/electronic structural dynamics

Insulating
Mn3+ Mn4+ Mn3+

Charge-localizing real-space ordering
Jahn-Teller Instability

Mn 3d orbitals

t2g

eg

Field-Induced Insulator-Metal Transition in Pr0.7Ca0.3MnO3

O O

Fiebig et al., Science, 1998
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Photoinduced Phase Transitions in Manganites

Future Research - Ultrafast X-rays

• Femtosecond Resonant X-ray Diffraction – Charge Ordering Dynamics
- Bragg diffraction at reflections forbidden by lattice symmetry

- charge anisotropy (charge ordering) � weak diffraction
- enhanced sensitivity at absorption edges, Mn K-edge, 1s-3d (quad. coupling), 1s-4p (d-p coupling)

Murakami et al., PRL, 1998; Zimmermann et al., PRL, 1999

• Time-resolved x-ray spectroscopy – XANES O K-edge, Mn L-edges
- changes in O-2p hybridization with Mn-3d (charge localization and d-electron hopping probability)

- structural changes in Mn-O complex (polarons, J-T distortion ionization, bond angles)

•Time-resolved XMLD, XMCD – Mn L-edges (magnetic ordering dynamics)
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laser wiggler

bend
magnet 

mirrorbeamline x-rays

wiggler

femtosecond 
electron bunch

bend magnet 
beamline

70 ps electron
bunch

femtosecond
laser pulse

spatial separation
dispersive bend

λW

electron-photon 
interaction in wiggler

femtosecond x-rays

e-beam 

Generation of Femtosecond X-rays from the ALS

A. Zholents and M. Zolotorev, Phys. Rev. Lett., 76, 916,1996.
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Energy Modulation in the Wiggler

total field energy:

wiggler radiated energy:
∆E (energy mod)
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Nwiggler - permanent magnets

wiggler radiation
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ωL = 1.55 eV

∆ωL = 27 period wiggler � 36 fs laser pulse

AL = 610 µJ

∆E ≅ 17 MeV
9σE

ALS beam energy spread σΕ ~1.9 MeV    Eo =1.9 GeV

x,E ~100 fs laser pulse
~30 ps electron bunch

z,t

x,E

z,t

Torbit = 656 ns

z,t

x,Etdamp = 6 ms

Dynamics of Modulated  Electron Beam

ρ(E)

∆E

accelerated 
electrons

decelerated 
electrons

Laser requirements:

x,E

z,t

300 fs (BL6.3.2)
200 fs (BL6.0)

tx-ray

στ = 85 fs / arc sector
200 fs FWHM

(72 fs) 

(780 µJ) 

ρ(5σE)=4×10-6 ρ(0)
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Femtosecond Undulator Beamline – Overview

I. Insertion Device

• small-gap undulator/wiggler (1.5 T, 50 x 3cm period)

III.  Laser: average power/repetition rate
• 30 W (1.5 mJ per pulse, 20 kHz)

sector 6 - proximity to existing wiggler 200 fs x-rays

x102 increase in flux, x103 increase in brightness

x10 increase in flux

• highest possible flux and brightness 0.2-10 keV

II. Beamlines for Femtosecond X-ray Science

IV.  Storage Ring Modifications
• local vertical dispersion bump – sector 6 and/or 5

• isolation of femtosecond x-ray,  0.2-2 keV, 2-10 keV

wiggler

mirror

beamline

femtosecond
x-rayse-beam 

undulator

laser

monochromatorspectrograph

bend magnet
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ALS Femtosecond Undulator Branchlines
P. Heimann, D. Plate, H. Padmore, R. Duarte, D. Cambie et al.

soft x-ray branch (0.2-2 keV)

Focus: 710 µm (H), 72 µm (V)
Focus: 60 µm (H), 37 µm (V)

∆E<0.5 eV

hard x-ray branch (2-10 keV)

Focus: 83 µm (H), 97 µm (V)
λ/∆λ>3000
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• pulse duration η2 = τlaser / τsynchrotron = 10-3 (τx-ray ≈ 170 fs)
(70 fs)    (70 ps)

• repetition rate η3 = flaser / fsynchrotron = 2x10-6

(1 kHz)     (500 MHz)

• flux ~1013 ph/sec/0.1% BW
• brightness ~1016 ph/sec/0.1% BW

• flux ~1015 ph/sec/0.1% BW
• brightness ~1019 ph/sec/0.1% BW

Bend Magnet Undulator

Femtosecond X-ray Facility – Scaling the X-ray Flux

flaser / fsynchrotron flimit ≈ 3× =150 kHz
(40 kHz)   (500 MHz)

number of bunches
τdamping

Average Femtosecond X-ray Flux ~ Average Femtosecond Laser Power

• phase factor η1 = 0.1  (fraction of electrons in optimum phase)

ττττdamping ~ 6 msec ⇔⇔⇔⇔ flimit ~ 1 kHz (2 bunches) ⇔⇔⇔⇔ ~40 nsec gate
> 1 kHz (multibunch) ⇔⇔⇔⇔ ~2 nsec gate
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Femtosecond X-ray Flux

HHG flux  from F. Krausz,  laser: 10 fs, 3 mJ/pulse, 30 W

Plasma source flux in mrad2 laser: 40 fs, 1 mJ/pulse, 30 W (continuum includes projected 105 improvement)
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bend magnet flux (150 fs, 1 kHz)

undulator flux (200 fs, 20 kHz)
(3 cm period, 1.5 m length, Bmax= 1.5 T)

HHG

plasma Kα

fs plasma continuum

ALS typical average x-ray flux
undulator ~1015 ph/s/0.1% BW
bend-magnet ~1013 ph/s/0.1% BW

Cu Kα - 1010 ph/s/4π (proj. 1012 with Hg target)
cont. 6x107 ph/s/4π (integ. from 7-8 keV)

300
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Advantages – Integrating Detectors

New Science

• eliminate need for high-speed (small area) APD detectors
high speed gatable ⇔ high quantum/collection efficiency

• XAS – fluorescence (molecular dynamics – dilute solutions)

• total electron yield or sample current (surface sensitive, thick samples)

• dispersive spectroscopy (soft x-ray, hard x-ray?)
1D detector with high efficiency (phosphor+CCD)

• 2D high efficiency integrating detectors
Laue diffraction, powder diffraction, SAX …..

e-
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Femtosecond ‘Slicing’ Operation - Considerations

• stability of displaced beam (<<1σ)

• laser alignment to displaced beam in straight 5

• nonlinear dispersion, Dy
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Single Kicker - Kick Every 5th Turn

straight 6 –large displacement

straight 5 - angular displacement ?
- laser alignment through W11 ?

Multiple Kickers to generate localized bump in sector 6
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Femtosecond ‘Slicing’ Operation - Considerations

• multibunch – 10 kHz, at ~1 mA/bunch
gated detectors – 2 ns resolution

• camshaft – 1 kHz operation (max) – per camshaft bunch
synchrotron damping
~10 mA/bunch (assume top-off operation)

• additional camshaft bunches – significant benefit 2x

Multibunch vs. Camshaft Operation

656 nsec

328 nsec


